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Abstract 

Introduction: Current electroencephalography (EEG) practice relies on interpretation by expert neurologists, which 
introduces diagnostic and therapeutic delays that can impact patients’ clinical outcomes. As EEG practice expands, 
these experts are becoming increasingly limited resources. A highly sensitive and specific automated seizure detec-
tion system would streamline practice and expedite appropriate management for patients with possible nonconvul-
sive seizures. We aimed to test the performance of a recently FDA-cleared machine learning method (Claritγ, Ceribell 
Inc.) that measures the burden of seizure activity in real time and generates bedside alerts for possible status epilepti-
cus (SE).

Methods: We retrospectively identified adult patients (n = 353) who underwent evaluation of possible seizures with 
Rapid Response EEG system (Rapid-EEG, Ceribell Inc.). Automated detection of seizure activity and seizure burden 
throughout a recording (calculated as the percentage of ten-second epochs with seizure activity in any 5-min EEG 
segment) was performed with Claritγ, and various thresholds of seizure burden were tested (≥ 10% indicating ≥ 30 s 
of seizure activity in the last 5 min, ≥ 50% indicating ≥ 2.5 min of seizure activity, and ≥ 90% indicating ≥ 4.5 min of 
seizure activity and triggering a SE alert). The sensitivity and specificity of Claritγ’s real-time seizure burden measure-
ments and SE alerts were compared to the majority consensus of at least two expert neurologists.

Results: Majority consensus of neurologists labeled the 353 EEGs as normal or slow activity (n = 249), highly epilep-
tiform patterns (HEP, n = 87), or seizures [n = 17, nine longer than 5 min (e.g., SE), and eight shorter than 5 min]. The 
algorithm generated a SE alert (≥ 90% seizure burden) with 100% sensitivity and 93% specificity. The sensitivity and 
specificity of various thresholds for seizure burden during EEG recordings for detecting patients with seizures were 
100% and 82% for ≥ 50% seizure burden and 88% and 60% for ≥ 10% seizure burden. Of the 179 EEG recordings in 
which the algorithm detected no seizures, seizures were identified by the expert reviewers in only two cases, indicat-
ing a negative predictive value of 99%.

Discussion: Claritγ detected SE events with high sensitivity and specificity, and it demonstrated a high negative 
predictive value for distinguishing nonepileptiform activity from seizure and highly epileptiform activity.

Conclusions: Ruling out seizures accurately in a large proportion of cases can help prevent unnecessary or aggres-
sive over-treatment in critical care settings, where empiric treatment with antiseizure medications is currently 
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Introduction
The timely diagnosis and treatment of patients with sei-
zures can prevent significant morbidity and mortality 
[1]. Approximately 30% of patients with altered men-
tal status in critical care settings have seizures, and over 
90% of these are nonconvulsive seizures that can only 
be detected with electroencephalography (EEG) [2–6]. 
There is rising awareness among healthcare practition-
ers that the burden of seizures, including nonconvulsive 
seizures, is associated with brain injury and, thus, con-
tinuous or frequent seizures (i.e., a high seizure burden) 
merit timely detection and treatment [7–10]. For this 
reason, both timely interpretation of EEG data and timely 
and accurate quantification of seizure burden  are  para-
mount to minimizing brain injury.

Unfortunately, the conventional practice of EEG in crit-
ical care and emergency department settings suffers from 
both delayed access to EEG recordings and significant 
delays in its interpretation by skilled neurologists [11, 12]. 
When actionable EEG interpretations are not immedi-
ately available, treatment decisions are made on the basis 
of clinical suspicion alone, which results in the potential 
for missing or undertreating some patients with noncon-
vulsive seizures and overtreating a significantly larger 
number of patients without seizure activity who may not 
need aggressive antiseizure medications [13, 14]. To pro-
vide timely access to EEG, novel rapid EEG systems can 
be used to enable physicians and allied health profession-
als to acquire EEG within minutes and stream the data in 
real time to the cloud, where a machine learning-derived 
classification algorithm can be applied [15–17].

The use of artificial intelligence (AI) in clinical medi-
cine has been on the rise, and within the specialty of 
neurology, brain signals have proven particularly ame-
nable to the machine learning approach [18]. There are 
few software programs commercially available to detect 
seizures or epileptiform discharges and mark the EEG 
tracing to help streamline expert review by neurologists. 
More novel methods for automatic detection of seizures 
and epileptic spikes have also been described in the liter-
ature with various methods and varying degrees of accu-
racy [19]. Such algorithms are designed to work solely 
with traditional EEG systems, which as noted are often 
delayed or unavailable, especially during after-hours and 
weekends [11, 12] and are too cumbersome for nonneu-
rology experts to use at the bedside. While a full review of 
these methods is beyond the scope of our present work, 

it is noteworthy that no method has yet been developed 
to provide an automated and quantified metric of seizure 
burden (i.e., frequency of seizures per unit of time) to 
help bedside practitioners caring for critically ill patients. 
Providing such feedback would allow for  risk stratifica-
tion and evaluation of treatment response, as well as for 
determining the urgency of requesting neurological con-
sultation, in real time.

The use of AI-assisted programs for EEG interpreta-
tion is becoming increasingly necessary as the utiliza-
tion of EEG is expanding in the fields of critical care and 
emergency medicine while human resources are scarce, 
and detailed review of many simultaneous continuous 
EEG recordings by neurologists in real time is simply too 
cost prohibitive to be deployed at scale. As a result, there 
exists a significant unmet need for automated algorithms 
that could assist nonexperts by providing a reliable risk 
stratification tool using EEG data in real time [18, 20, 
21]. Such a tool could alert the bedside nurse or provider 
on call when it detects a near-continuous epileptiform 
pattern resembling status epilepticus that may require 
urgent management and enable providers to see the real-
time effect of administered antiseizure medications on 
the burden of seizure activity.

In the current study, we aim to validate a supervised 
machine learning algorithm, labeled as Claritγ (Ceri-
bell Inc., Mountain View, California), that was recently 
approved by the FDA and is being used in clinical set-
tings as a clinical decision support tool. We designed this 
retrospective study to measure the performance of the 
algorithm applied to EEG data acquired using Ceribell’s 
Rapid Response EEG system (Rapid-EEG) from patients 
in critical care and emergency department settings and 
to describe its potential clinical implications.

Methods
Rapid Response EEG System
The Rapid-EEG system (Fig.  1, see www.cerib ell.com 
for additional information) consists of a headband with 
ten electrodes connected to a handheld recorder. The 
headband is placed circumferentially around the head 
and is fastened over the forehead with a locking clasp, 
and EEG setup is typically performed by nurses, allied 
health professionals, or healthcare providers trained 
by either online or in-person sessions. The Rapid-EEG 
electrodes (1–5 on the left, 6–10 on the right; electrode 
number increases anterior to posterior, i.e., leads 1 and 6 

prevalent. Claritγ’s high sensitivity for SE and high negative predictive value for cases without epileptiform activity 
make it a useful tool for triaging treatment and the need for urgent neurological consultation.
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are near the frontal pole and leads 5 and 10 are near the 
occiput) correspond approximately to the lateral chains 
of the International 10–20 system (Fp1–F7, F7–T3, T3–
T5, and T5–O1 on the left; Fp2–F8, F8–T4, T4–T6, and 
T6–O2 on the right), and a longitudinal bipolar mon-
tage is constructed to display the EEG waveforms. Dur-
ing EEG recording, the system simultaneously measures 
the impedance between two adjacent electrodes once 
per minute using a test frequency that is outside the EEG 
recording band to avoid creating artifact. The data are 
acquired as digital samples at a rate of 250 Hz. The hand-
held recorder displays, records, and wirelessly transmits 
the data to a remote cloud server, where a cloud-based 
seizure detection software continuously monitors the 
EEG recording.

EEG Data
All EEGs were obtained with Rapid-EEG (Ceribell Inc., 
Mountain View, California). The recordings were from 
adult patients (≥ 18 years old) undergoing evaluation for 
altered mental status and possible seizures in intensive 
care units and emergency departments at six academic 
and community hospitals across the USA between Janu-
ary 2018 and April 2019. EEG data were anonymized, 

and no identifying demographic or clinical informa-
tion was accessed for this study. The study was classified 
as exempt research according to the US Department of 
Health and Human Services regulation 45 CFR 46.104(d)
(4), and individual patient consent was not required. It 
should be noted that the Claritγ algorithm was developed 
using training and testing datasets that were entirely dif-
ferent and independent from the dataset we have used 
in the current study for the validation of the algorithm 
performance.

Validating Claritγ Seizure Burden Algorithm
We validated the performance of the Claritγ algorithm in 
a cohort of 353 Rapid-EEG recordings from 353 patients. 
An overview of the algorithm is shown in Fig. 2. The sig-
nal from each EEG channel was filtered and segmented 
into nonoverlapping ten-second bins. Time-domain and 
frequency-domain features were calculated for each ten-
second bin of EEG signal. Seizure activity was defined for 
each ten-second bin using multiple features, including 
measures of power (power within each frequency band 
and their ratios), morphology (signal amplitude, vari-
ability, distribution, and change over time), rhythmicity 
and regularity (measures of entropy), and correlation 

Fig. 1 Rapid Response EEG system. The Rapid Response EEG system (Rapid-EEG) consists of a portable EEG recorder and a disposable electrode 
headband. Recorded EEG tracings are shown on the device screen (1) and sonified when needed (2) by the bedside recorder. HIPAA-compliant 
secure Wi-Fi connection enables real-time transfer of the data to the cloud where the EEG tracings can be reviewed by expert neurologists using 
the remote portal for EEG review (3). Machine learning computations (by Claritγ algorithm) are performed on the cloud portal (4) interfacing in 
real time with the bedside device. As such, the system is meant to provide not only easy and fast access to EEG acquisition, but also a reliable and 
actionable diagnostic information for risk stratification using four different modes of triage



(cross-channel correlation of signals). For each ten-sec-
ond bin, the algorithm classified the segment of signal 
as either seizure or nonseizure in a deterministic (rather 
than probabilistic) manner. Seizure burden was calcu-
lated as the percentage of ten-second bins of EEG data 
in a 5-min period that were classified as seizure activity. 
This seizure burden value is updated every ten seconds 
to generate a rolling 5-min window, resulting in a con-
tinuous seizure burden trend that represents the evolu-
tion of the patient’s seizure prevalence over the course of 
monitoring. The maximum seizure burden for the dura-
tion of each recording was used as the final output of 
the algorithm for this study; however in clinical practice, 
the seizure burden value and trend would be available 
continuously.

Seizure burden, the prevalence of seizure activity 
within any 5-min period, was described using thresh-
olds adapted from American Clinical Neurophysiol-
ogy Society guidelines [22] as follows: 10% was defined 
as “frequent” (indicating 30  s of seizure activity), 50% 
was defined as “abundant” (indicating 2.5 min of seizure 
activity), and 90% was defined as “continuous” (indicat-
ing 4.5 min of seizure activity). A seizure burden of 90% 

(4.5 min) indicates activity approaching the definition of 
status epilepticus (5 min), so the algorithm would present 
an alert to the user at any point when the seizure burden 
reaches a threshold of 90%.

Reference Standard Defined by Expert Neurologists’ 
Review of EEG
Each EEG file was independently reviewed by at least 
two independent neurologists with fellowship training 
in clinical neurophysiology or epilepsy. Reviewers were 
blinded to patients’ clinical information, including medi-
cal history, indication for EEG monitoring, prior treat-
ment with antiseizure medication, and Claritγ seizure 
burden trend. Expert consensus (reference standard) was 
defined by agreement between a minimum of two neu-
rologists; additional reviewers were consulted if the first 
two neurologists did not agree until a majority consen-
sus was reached. Reviewers were instructed to indicate 
whether the EEG contained normal, diffusely slow, highly 
epileptiform, or seizure activity. Highly epileptiform pat-
terns (HEP) included activity that did not fully meet the 
Salzburg criteria [23] for electrographic seizure activity, 
but did represent abnormal electrographic epileptiform 

Fig. 2 Computation of seizure burden. The output of the Claritγ algorithm was a continuous quantitative trend of seizure burden values, which rep-
resented the percentage of 10-second long bins of EEG data in a 5-min period that contained seizure activity. Seizure burden values updated every 
10 s; therefore, consecutive seizure burden values (e.g., value 1 and 2, as shown, offset by 10 s) could represent the evolution of the patient’s seizure 
prevalence over the course of the recording. Seizure burden thresholds were adapted from American Clinical Neurophysiology Society guidelines 
[22], such that “frequent” seizure activity was defined as 10% seizure burden (i.e., 30 s of seizure activity within a 5-min period), “abundant” seizure 
activity was defined as 50% seizure burden (i.e., 2.5 min of seizure activity within a 5-min period), and “continuous” seizure activity was defined as 
90% seizure burden (i.e., 4.5 min of seizure activity within a 5-min period). An alert was presented to the user when seizure burden reached a thresh-
old of 90%, which indicated a high risk of status epilepticus and the impending need for urgent clinical intervention



activity such as periodic discharges or lateralized rhyth-
mic delta activity [24, 25]. These patterns merited sepa-
rate consideration from other nonseizure patterns for 
two major reasons. First, these patterns exist on a spec-
trum of pathologic activity along with seizures—the so-
called ictal–interictal continuum (IIC)—and at times, 
they can be difficult to distinguish from seizures, espe-
cially absent ancillary clinical information [26–28]. Sec-
ond, these patterns might benefit from treatment with 
antiseizure medications, and measuring the performance 
of the algorithm in these cases would have clinical signifi-
cance [26, 29–31]. See Fig. 3 for a representative sample 
of each of these categories recorded using Rapid-EEG. 
Each EEG recording and each individual labeled episode 

were divided into one of three categories based on the 
most severe pattern present in the recording defined by 
expert majority consensus: seizures (high severity), HEP 
(intermediate severity), and normal or slow activity (low 
severity). Therefore, a reference standard was generated 
for individual episodes as well as for the overall EEG 
recording. EEG readers also labeled the start and end of 
the EEG patterns, which allowed for calculation of sei-
zure duration that could be compared to the algorithm 
output.

Statistical Analysis
We defined the reference (“gold”) standard as the consen-
sus agreement of at least two neurologists reading the same 

Fig. 3 Samples of EEG recorded with Ceribell Rapid Response EEG System. Each EEG is displayed in a ten-second epoch with filter settings of 
1–30 Hz. The line plot under each EEG shows the Claritγ algorithm output. The top image shows seizure activity approaching the 90% threshold to 
trigger a status epilepticus alert, and the bottom image shows lateralized periodic discharges that go undetected by the algorithm



EEG, both for each overall EEG record and for individual 
episodes of expert-identified seizures. We then tabulated 
Claritγ algorithm output of seizure burden against this ref-
erence standard. Using these tabulations, we calculated the 
sensitivity, specificity, and false detection rate (number of 
false positive events divided by the total duration of EEG 
recordings in hours) of various seizure burden thresholds 
(10%, 50%, 90%) against the expert consensus; 95% CIs for 
sensitivity and specificity measures were calculated using 
established formulas [32]. It should be noted that the three 
thresholds are cumulative—i.e., all 90% alerts by definition 
generate both a 10% and a 50% notification, and all 50% 
alerts by definition first generate a 10% notification. Our 
validation study was not designed to optimize among the 
three different thresholds.

Given the wealth of evidence [33–36] describing the 
variability between expert EEG reviewers, whether due to 
human error or to differences in interpretation, we sought 
to contextualize the observed diagnostic accuracy of the 
seizure detection algorithm by quantifying the inter-rater 
variability. We calculated the sensitivity and specificity of 
identifying EEGs with status epilepticus for each of the 
experts that reviewed at least 250  h of EEG. No single 
expert reviewed all of the cases, and because each of the 
experts reviewed a different subset of the recordings, we 
could not quantify inter-rater variability using Cohen’s κ.

Results
Reference Standard
A total of 353 Rapid-EEG recordings were evaluated in 
this study with a cumulative EEG recording duration of 
1052  h (mean EEG duration: 233 ± 227  min). No cases 
were excluded. Expert consensus determined the most 
severe feature of the overall EEG record to be status epi-
lepticus in nine cases, seizures (duration < 4.5  min) in 
eight cases, HEP in 87 cases, and normal or low back-
ground in 249 cases (Table 1). Within the 353 recordings, 
a total of 47 discrete seizure events were identified by 
expert consensus.

Algorithm Performance
Claritγ algorithm output of seizure burden compared 
against expert consensus diagnosis for both overall 
EEG records and individual events is summarized in 
Table 1, and performance (in terms of sensitivity, speci-
ficity, and false detection rate) is summarized in Table 2. 
Claritγ detected ≥ 90% seizure burden (seizure activ-
ity ≥ 4.5  min, thereby triggering an alert for impending 
status epilepticus) in nine out of nine Rapid-EEGs with 
status epilepticus, and within these cases, Claritγ cor-
rectly detected ≥ 90% seizure burden in 12 out of 13 dis-
crete events of seizure lasting ≥ 4.5  min. Therefore, the 
sensitivity for identifying status epilepticus was 100% for 

the overall record, and the sensitivity for identifying indi-
vidual seizure episodes that were ≥ 4.5 min was 92.3%.

The specificity of the ≥ 90% seizure burden notifica-
tion was 93.0%, resulting in a false detection for only 24 
out of 353 EEGs. In 21 (87.5%) of these false detections, 
the expert consensus categorization of the EEG was HEP, 
indicating that there was concerning epileptiform activ-
ity present in the record, even if no unequivocal seizures 
were agreed to be present by both reviewers.

Claritγ correctly identified 41 of the 47 total discrete 
seizure events of any duration (88.2% sensitivity). In the 
1052 h of cumulative EEG across the 353 EEG recordings, 
Claritγ had 383 false detections, resulting in  an over-
all false detection rate of 0.36 per hour. Of the 179 EEG 
recordings in which Claritγ detected no seizures, seizures 
were identified by the expert reviewers in only two cases 
(negative predictive value of 99%). In both cases, the sei-
zures missed by Claritγ were less than 30 s in duration.

The four experts reviewed at least 250 h of the overall 
dataset (1052 total hours). When these four reviewers’ 
identifications of status epilepticus were compared to the 
majority consensus (Table 3), individual expert raters dis-
played variability in both sensitivity (range 20–89%) and 
specificity (range 94–99%). In general, reviewers with the 
lowest sensitivity also had the highest specificity, a nat-
ural trade-off. It is also important to note that, in some 
cases, reviewers classified a status epilepticus case as a 
highly epileptiform pattern (HEP). This was considered a 
miss and reduced the reviewer’s sensitivity even though 
the reviewer did not consider the EEG to be normal. Each 
expert reviewed a different subset of the 353 total record-
ings. Between the four experts, a total of 784 individual 
reviews were performed (an average of 2.22 reviews per 
EEG recording). No single expert reviewed all of the 
cases. The number of reviews performed by each expert 
is shown in Table  3. Overall, experts displayed greater 
specificity compared to Claritγ, and each of the reviewers 
misclassified at least one case of status epilepticus.

Table 1 Summary of  Claritγ Performance (individual 
patient level)

HEP highly epileptiform pattern, NL normal background activity, SE status 
epilepticus, SL slow background activity, SZ seizure

Claritγ output, % 
seizure burden

Human expert rating, n

SE SZ HEP NL/SL Total

SZ burden ≥ 90% 9 0 21 3 33

SZ burden 50–89% 0 3 21 15 39

SZ burden 10–49% 0 3 20 56 79

SZ burden 1–9% 0 0 5 18 23

SZ burden 0% 0 2 20 157 179

Total 9 8 87 249 353



Discussion
In this study, we describe the development of an artificial 
intelligence machine learning algorithm for seizure bur-
den measurement using EEG data acquired with Rapid 
Response EEG. This algorithm showed high sensitivity 
(100%) in the detection of status epilepticus (even out-
performing some neurologists with fellowship training in 
clinical neurophysiology or epilepsy) and accurately iden-
tified 88% of seizures of any duration when compared to 
the reference standard of consensus of expert neurolo-
gists (Fig. 4). The specificity of the algorithm for seizures 
at all seizure burden thresholds was principally limited by 
“misclassification” of highly epileptiform patterns. These 
patterns possess multiple “seizure-like” qualities trained 
into our algorithm (e.g., rhythmicity, sharply contoured 
morphology, high amplitude, and extant correlation 
across channels) as seizures. Raising the seizure burden 
threshold to trigger an alarm (i.e., only alerting the user 
if the burden reaches 90% level) increased the algorithm’s 
specificity for prolonged seizures as high as 93%. As such, 
the algorithm performance can be considered to be reli-
able and valid at the extremes of the spectrum of seizure 

burden (i.e., possible status epilepticus and normal dif-
fusely slow activity), but considerably less so if the burden 
of abnormality is less frequent or brief in duration. While 
our new algorithm output provides a trendline and a 
means to assist in triage/prioritization, it is important for 
users to understand its lower specificity for milder cases 
of abnormality or shorter duration seizures.

Suggested Clinical Implementation Workflow
In considering the potential clinical implications of Rapid 
Response EEG with Claritγ, it is important to ensure its 
proper integration into existing workflows to secure its 
maximum (and safe) impact on physicians’ clinical deci-
sion making and patient management. We remind the 
reader that the output of any AI algorithm ought to be 
interpreted in the context of the user’s pretest clinical 
judgment. In keeping with this, we have made an initial 
attempt to recommend a possible workflow for the use 
of our algorithm in the current clinical practice of Rapid-
EEG (Table  4). We are mindful that the workflow may 
need to be modified in different settings depending on 
the resources available and the clinical division where the 
Rapid-EEG technology is being utilized.

As suggested in this workflow, Claritγ algorithm has 
potential utility as the first of its kind risk stratification 
tool to streamline the practice of stat EEG and guide 
emergent triage and more precise treatment for patients 
with low or high suspicion for nonconvulsive seizures. 
Moreover, it also can lessen the stress and unnecessary 
burden on neurologists with EEG expertise. We are hope-
ful that simplified risk stratification offered by our algo-
rithm combined with the earlier and easier acquisition of 
EEG will lead to better management of patients in need.

Table 2 Sensitivity and specificity of Claritγ algorithm for seizure detection

CI confidence interval, FDR false detection rate
aFalse detection rate (in events per hour of EEG) was calculated as the number of false positive events divided by the duration of recording (in hours)
bOne seizure event that did not trigger a status alarm occurred during the last 10 min of a 200-min EEG record. The algorithm correctly identified the seizure, but the 
threshold for 90% seizure burden (4.5 min) was not yet reached at the time the recording was discontinued
cConfidence intervals are not calculated in cases where the sampled sensitivity was 100% as estimated confidence intervals in the event of perfect sample sensitivity 
do not provide meaningful information

Claritγ output Patient level Event level

N Sensitivity (95% CI) Specificity 
(95% CI)

N Sensitivity (95% CI) False positives 
(95% CI)

FDRa

SZ burden ≥ 90% 9 100.0%c 93.0% 13 92.3%b 62 0.06

95% CI [90, 95] [60, 100]

SZ burden ≥ 50% 12 100.0%c 82.4% 18 100.0%c 139 0.13

95% CI [78, 87]

SZ burden ≥ 10% 17 88.2% 59.5% 35 80.0% 324 0.31

95% CI [65, 100] [54, 65] [63, 91]

Table 3 Variability in  status epilepticus detection 
between  individual experts and  Claritγ status alert com-
pared to expert consensus

Reviewer Sessions 
reviewed

Sensitivity (%) Specificity (%)

1 240 62.5 94.8

2 198 20.0 99.5

3 257 88.9 94.3

4 89 66.7 95.2

Claritγ 353 100.0 93.0



Fig. 4 Summary of Claritγ Performance. Performance of Claritγ algorithm at the group level suggests that the algorithm can be seen as a reliable 
triage tool to help detect cases of status epilepticus with the highest sensitivity (while overcalling about one-fourth of highly epileptiform patterns 
as possible status epilepticus). It also performs as a reliable triage tool to help physicians avoid over-aggressive treatments in majority of EEG cases 
where the overwhelming pattern is either slowing or normal. HEP highly epileptiform patterns, NL normal activity, RDA rhythmic delta activity, SE 
status epilepticus, SL slow activity, SZ seizure

Table 4 Suggested clinical implementation workflow of Claritγ algorithm

a Expedited review of EEG can be done remotely in real time by a neurologist with EEG expertise since the Rapid-EEG device sends the EEG data wirelessly to a 
cloud portal. EEG review can also be performed at the bedside by both expert or nonexpert users. For instance, similar to common models of electrocardiographic 
monitoring [40] or bedside quantitative EEG products [41, 42], critical care staff may be trained to recognize the most salient and clinically important EEG signatures 
associated with status epilepticus. They can rely on their own bedside visual EEG review combined with the Rapid-EEG’s Brain Stethoscope function [43]. In three 
clinical studies so far, staff with minimal or no EEG experience increased their accuracy of seizure diagnosis significantly by relying on either Brain Stethoscope alone 
[15, 16] or combined with bedside visual EEG review [17]. It is important to note that a much larger number of EEG cases often do not result in seizure output, and 
hence, use of the algorithm will lead to prevention of overtreatment of these cases. Given the high sensitivity of the algorithm, false negative cases would be much 
less frequent

Pretest clinical suspicion

High Low

AI output > 90% Treat urgently → urgent review of  EEGa Review of EEG → treat if seizures confirmed on EEG or if 
EEG reading is not readily possible

10–90% Review of EEG → treat if seizures confirmed on EEG or if EEG 
reading is not readily possible

Do not treat yet → Review of EEG whenever possible

< 10% Do not treat yet→ Review of EEG whenever possible Do not treat → nonurgent review of EEG



Study Limitations
The lack of clinical data provided to reviewers during 
their retrospective EEG review was the most important 
limitation of this study and should be considered highly 
relevant to the interpretation of its findings. In clinical 
practice, patient history (e.g., an established diagnosis of 
epilepsy with a known seizure semiology, recent antisei-
zure medications) and bedside or video observations 
(e.g., twitching or behavioral changes) are used to inform 
EEG interpretation and make definitive determinations 
of seizure versus nonseizure, and treatment is tailored to 
the patient as a whole rather than the EEG in isolation. 
Claritγ, like all other automated seizure detection algo-
rithms, does not consider ancillary clinical information, 
and it is critical to acknowledge that output from such an 
algorithm does not provide the final diagnostic conclu-
sion for the patient. Indeed, the sensitivity and specificity 
of any system for EEG review (human or machine) would 
be significantly improved by access to additional patient 
data.

The implementation of Claritγ and its impact on real-
world diagnostic and treatment decisions were not stud-
ied here and may be addressed in future investigations. 
As noted in the discussion of clinical workflow, indi-
vidual providers or practice groups may utilize different 
alarm thresholds to expedite EEG review and treatment 
or establish treatment protocols that rely on the various 
functions of Rapid-EEG (visual waveform review, EEG 
sonification, Claritγ seizure burden) based on providers’ 
comfort with each.

Our cohort contained a relatively low number of status 
epilepticus cases (nine out of 353 EEGs) which affects the 
reliability of our sensitivity estimate. A larger cohort of 
Rapid-EEG data would be helpful to address this. How-
ever, it should be noted that this multisite cohort was 
obtained without excluding cases and could be consid-
ered reflective of the population being studied.

The Rapid-EEG system lacks midline and parasagit-
tal electrodes, and consequently a focal seizure that is 
highly localized to the parasagittal region would not be 
detected by Rapid-EEG or identified by Claritγ (although 
prior research [37–39] has argued that this lack of cover-
age might not significantly impact its sensitivity in criti-
cal care and emergency medicine settings).

Conclusions
Implementation of artificial intelligence tools in the field 
of neurology and epileptology remains limited despite 
the urgent need for tools to accommodate the expand-
ing practice of EEG and address the inefficiencies of the 
current EEG infrastructure. Claritγ provides highly sen-
sitive detection of status epilepticus and may be useful 
as a risk stratification tool that could expedite diagnosis 

and treatment of patients with nonconvulsive seizures. 
We believe that machine learning tools will never replace 
a careful history and examination filtered through a 
well-honed clinical acumen of the user and recommend 
its safe use by interpreting its output in the context of 
proper clinical judgment.
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