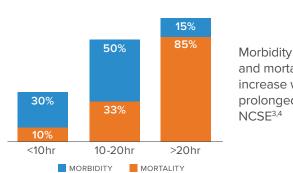
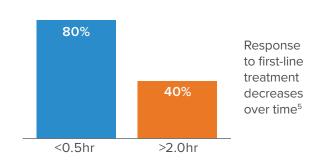


The world's first brain monitor for point-of-care seizure triage and treatment optimization



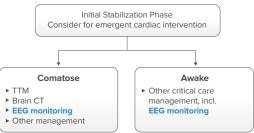
Non-convulsive seizures are highly prevalent^{1,2}



Time to treatment is critical

and mortality increase with prolonged

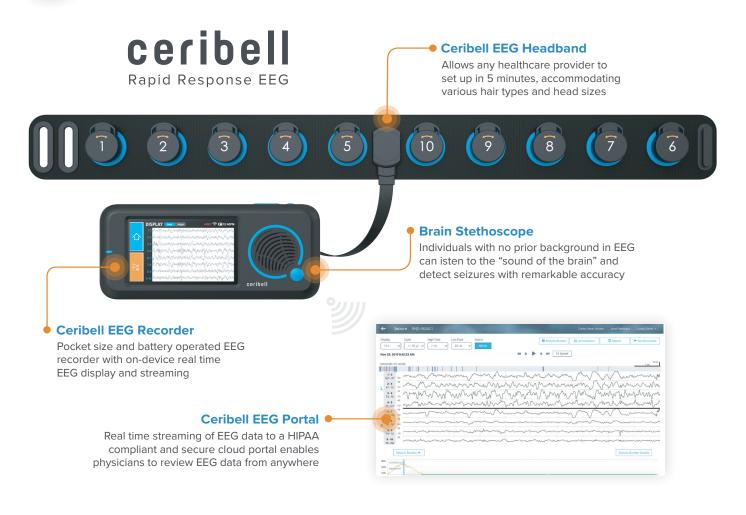
Guidelines from medical societies recommend prompt EEG



EEG should be initiated within 15-60 minutes of suspected Status Epilepticus in all patients.6

We recommend promptly performing and interpreting **EEG** for the diagnosis of seizures in all comatose patients after ROSC.7

2020 Adult Post-cardiac Arrest Care Algorithm¹



"Early access to EEG will lead to early detection, and hence, more effective treatment of seizures, which will in turn prevent refractory status epilepticus; neuronal injury; and potentially deleterious impacts on patient morbidity, mortality, and long-term outcome in terms of cognitive disability, overall neurologic function, and development of chronic epilepsy."

The DECIDE⁸ study is a multi-center prospective observational clinical study that evaluates the Clinical Impact of the Ceribell Rapid Response EEG.

24/7 continuous bedside EEG monitoring and alert

clarity

At the bedside, Clarity provides:

- First FDA-cleared instantaneous bedside alert indicating status epilepticus
- Continuous EEG monitoring and seizure burden display*9

Remotely, Clarity provides:

- Prelabeled EEG making EEGreading more efficient
- First FDA-cleared seizure burden trend for effective patient management

Clinically proven technology provides optimal care you can count on

Wait time for EEG

4hrs

5 min
with Ceribell

even in top academic centers with 24/7 on-site EEG technologists⁸

	Conventional EEG	ceribell
Median	minutes 239	minutes 5
Interquartile Range Number of observations	134-471 142	4-10 163

Diagnostic accuracy

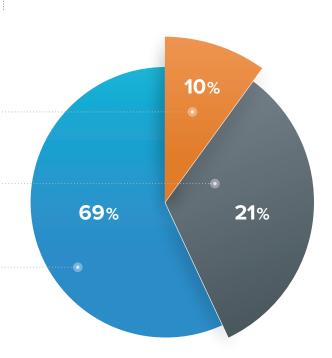
with Ceribell was 90% and sensitivity of detection of status epilepticus was 100%.8

	CLINICAL JUDGEMENT ALONE	JUDGEMENT WITH
Diagnostic Accuracy	65%	90%
Sensitivity	78%	100%
Specificity	64%	89%

Optimal care you can count on

Don't miss possible status epilepticus

100% sensitivity for status epilepticus¹⁰


Highlight concerning patterns

Accurate annotations for non-emergent abnormal activity (seizure burden⁹ = 10-90%)¹⁰

Confidence to rule out seizure

99% negative predictive value¹⁰

Enhancing Your EEG capability to 24/7 on-site monitoring

- Minimize delays in treating non-convulsive status epilepticus
- Avoid unnecessary anti-epileptic medications
- Avoid unnecessary patient transfers
- Reduce patient length of stay

Optimize patient care and improve profitability while lowering costs

Increased EEG access leads to improved MS-DRG assignment with CC/MCC¹⁵

Each EEG-triggered CC/MCC leads to \$5k to \$24K additional coding per case

Ceribell qualifies for the below EEG CPT codes

Routine EEG Codes - Codes include Professional and Technical components

Recording duration	8+ Channels - No video		
	Code	Code	
20-40 Minutes	95816*	1.08	
20-40 Minutes	95819*	1.08	
41-60 Minutes	95812	1.08	
61-119 Minutes	95813	1.63	

^{* 95816} Awake & Drowsy 95819 Awake & Asleep

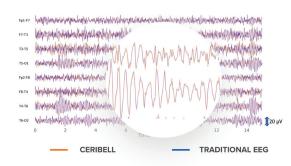
Long-Term EEG Codes - PROFESSIONAL Component

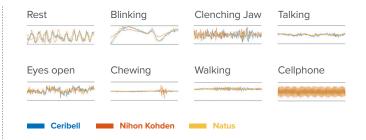
	Times of new set	8+ Channe	s - No video	
Recording duration	Referred to as	Time of report	Code	Work RVUs
2-12 Hour	Partial day	Daily Report	95717	2.0
12-26 Hour	Full day	Daily Report	95719	3.0

Long-Term EEG Codes - TECHNICAL Component

December describe	Monitoring - 8+ Channels - No video		
Recording duration	None	Intermittent	Continuous
2-12 Hour	95705	95706	95707
12-26 Hour	95708	95709	95710

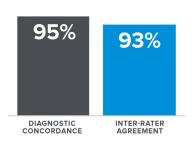
Ceribell should be used for:


- Complementing conventional EEG when tech/equipment is not available
- Critical care EEG
- Emergency EEG in ED or ICU to detect status epilepticus
- Prevention of treatment delays and of over-treatment


Ceribell should NOT be used for:

- Replacing long term video EEG monitoring
- Replacing conventional EEG to formally diagnose epilepsy

Ceribell's signal quality is equivalent to conventional EEG¹¹



EEG using a circumferential 10-electrode montage meet the gold standard

An assessment of 169,510 EEGs showed that midline and parasagittal focal seizures were found in only 0.7% of EEGs.^{12,13}

The rm-EEG resulted in high diagnostic concordance (95%) with fm-EEG and high agreement between EEG-readers (93%) when ancillary information was equal.¹⁴

Benefits

Neurology gets compensated for reading Ceribell EEGs with CPT codes

Improve level of service and clinical care by reducing wait time for stat EEGs

Improve quality of life for EEG technologists

Quickly respond to stat EEG requests and ability to triage to long term monitoring to best utilize your techs' time and equipment

Improve quality of life for neurologists

If needed, Brain Stethoscope can be used by nonneurologists during after-hours to avoid late calls to neurologist. Ceribell offers easy remote access to EEGs from any device with an internet connection

Neurology develops the Ceribell EEG workflow

Neurology approves appropriate patient selection, patient volume, and reads the Ceribell EEGs

Grow neuro-service line without hiring additional EEG tech

Increase Neurology's Profitability as Ceribell EEG is typically paid for by the operational budget of the department managing those patients (ICU, etc.), while neurology charges for reading fees

For more information: e EEG@ceribell.com | p 1-800-436-0826 | www.ceribell.com

CAUTION: FEDERAL (US) LAW RESTRICTS THIS DEVICE TO SALE BY OR ON THE ORDER OF A PHYSICIAN. REFER TO OPERATOR MANUAL AND LABELING FOR INDICATIONS, CONTRAINDICATIONS, WARNINGS, PRECAUTIONS AND INSTRUCTIONS FOR USE.

REFERENCES

- 1. Herman, S. et al. J Clin Neurophysiol 2015;32:87–95, doi: 10.1097/WNP.000000000000166
- 2. Friedman, D. et al. Anesth Analg 2009;109:506-23, doi: 10.1213/ane.0b013e3181a9d8b5
- 3. Young, G.B. et al. Neurology 1996;47:83-89, doi: 10.1212/wnl.47.1.83
- 4. Beg, T.D. et al. J of Med Econ 2017;20:45-53, doi: 0.1080/13696998.2016.1223680
- 5. Lowenstein, D.H. et al. Neurology 1993;43:483-8, doi: 0.1212/wnl.43.3_part_1.483
- 6. Brophy, G. et al. Neurocrit Care 2012;17:3-23, doi: 10.1007/s12028-012-9695-z
- 7. Panchal, A.R. et al. Circulation. 2020;142(suppl 2):S366–S468. DOI: 10.1161/CIR.000000000000016
- 8. Vespa, P. et al. Critical Care Medicine. 2020. doi: 10.1097/CCM.000000000004428
- American Clinical Neurophysiology Society's Standardized Critical Care EEG Terminology: 2012. Journal
 of Clinical Neurophysiology, Volume 30, Number 1, February 2013
- 10. Kamousi, B. et al. Neurocrit Care 2020;34:908–917, doi:10.1007/s12028-020-01120-0
- 11. Kamousi, B. et al. Clin Neurophysiol Practice 2019;4:69-75, doi: 10.1016/j.cnp.2019.02.002
- 12. Pedley, T. A. et al. Ann. Neurol. 1981;9:142-149, doi: 10.1002/ana.410090207
- 13. Gururangan K. & Parvizi, J. 2019(online), doi: 10.1007/s12028-019-00804-6
- 14. Westover, M. B. et al. Neurocrit Care 2020; doi:10.1007/s12028-019-00911-4
- 15. Ney, J., (2016) Retrospective analysis of EEG enabled CC and MCC coding. Medicare database